Proteomic Analysis and Identification of Paracrine Factors in Mesenchymal Stem Cell-Conditioned Media under Hypoxia.

نویسندگان

  • Suk-Won Song
  • Kyung-Eun Kim
  • Jung-Won Choi
  • Chang Youn Lee
  • Jiyun Lee
  • Hyang-Hee Seo
  • Kyu Hee Lim
  • Soyeon Lim
  • Seahyong Lee
  • Sang Woo Kim
  • Ki-Chul Hwang
چکیده

BACKGROUND/AIMS We previously showed that a hypoxic environment modulates the antiarrhythmic potential of mesenchymal stem cells. METHODS To investigate the mechanism by which secreted proteins contribute to the pathogenesis of antiarrhythmic potential in mesenchymal stem cells, we used two-dimensional electrophoresis combined with MALDI-TOF-MS to perform a proteomic analysis to compare the paracrine media produced by normoxic and hypoxic cells. RESULTS The proteomic analysis revealed that 66 protein spots out of a total of 231 matched spots indicated differential expression between the normoxic and hypoxic conditioned media of mesenchymal stem cells. Interestingly, two tropomyosin isoforms were dramatically increased in the hypoxic conditioned medium of mesenchymal stem cells. An increase in tropomyosin was confirmed using Western blot to analyze the conditioned media between normoxic and hypoxic cells. In a network analysis based on gene ontology (GO) Molecular Function by GeneMANIA analysis, most of the identified proteins were found to be involved in the regulation of heart processes. CONCLUSION Our results show that hypoxia up-regulates tropomyosin and other secreted proteins which suggests that tropomyosin may be involved in regulating proarrhythmic and antiarrhythmic functions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hypoxia Pre-Conditioned Embryonic Mesenchymal Stem Cell Secretome Reduces IL-10 Production by Peripheral Blood Mononuclear Cells

Background: Mesenchymal stem cells (MSCs) are important candidates for MSC-based cellular therapy. Current paradigm states that MSCs support local progenitor cells in damaged tissue through paracrine signaling. Therefore, study of paracrine effects and secretome of MSCs could lead to the appreciation of mechanisms and molecules associated with the therapeutic effects of these cells. This study ...

متن کامل

The effect of mesenchymal stem cell ‑conditioned medium on the proliferation of cancer cell lines, A549 and JEG3

Background: Cancer is a significant public health problem. Some studies indicated the anti-cancer effects of mesenchymal stem cells. These effects are related to stem cells or secretory mediator of them. The aim of this study was to evaluate the impact of condition medium of mesenchymal stem cells on A549 and JEG3 cancer cell lines. Methods: In an experimental study, A549 and JEG3 cell lines p...

متن کامل

Immunoregulatory impact of human mesenchymal-conditioned media and mesenchymal derived exosomes on monocytes

Mesenchymal stem cells (MSCs) are well known due to their immunomodulatory effect, but the exact mechanisms have not been defined. Several studies demonstrated that the exerted immunoregulatory effect of these cells could be mediated by paracrine factors to illustrate, cytokines, chemokine, and among which, extracellular vesicles are one of them to play a crucial role. Moreover, it is assumed t...

متن کامل

Hypoxic Conditioned Medium from Human Amniotic Fluid-Derived Mesenchymal Stem Cells Accelerates Skin Wound Healing through TGF-β/SMAD2 and PI3K/Akt Pathways

In a previous study, we isolated human amniotic fluid (AF)-derived mesenchymal stem cells (AF-MSCs) and utilized normoxic conditioned medium (AF-MSC-norCM) which has been shown to accelerate cutaneous wound healing. Because hypoxia enhances the wound healing function of mesenchymal stem cell-conditioned medium (MSC-CM), it is interesting to explore the mechanism responsible for the enhancement ...

متن کامل

The Effects of Dental Pulp Stem Cell Conditioned Media on the Proliferation of Peripheral Blood Mononuclear Cells

Background: Dental Pulp Stem Cells (DPSCs) are multipotent mesenchymal stem cells. DPSCs can renew themselves and differentiate into various cell types such as adipocytes, osteocytes, neurons, etc. DPSCs possess immunomodulatory properties and can inhibit peripheral blood mononuclear cell (PBMC) proliferation. Recent studies showed that conditioned-medium mesenchymal stem cells also had immunos...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Cellular physiology and biochemistry : international journal of experimental cellular physiology, biochemistry, and pharmacology

دوره 40 1-2  شماره 

صفحات  -

تاریخ انتشار 2016